A Program of Long Baseline Neutrino Exploration at Fermilab

R. Ray Fermilab

What we know, what we would like to know...

Would like to have more precise knowledge of mixing. Do v_e 's participate in oscillations at atmospheric scale?

Is $\Delta m^2 > 0$ or < 0? Is CP violated?

The Fermilab long-range plan for long baseline experiments addresses all of these issues in a step-by-step program of detectors and beamline upgrades.

MINOS (Main Injector Neutrino Oscillation Search)

Long baseline oscillation experiment designed to:

- Demonstrate oscillation behavior
 - Confirm and describe flavour oscillations
 - Provide high statistics discrimination against alternative models (decoherence, v decay, extra dimensions, etc.)
- Precise Measurement of Δm_{23}^2 to ~ 10%
- Search for $v_{\mu} \rightarrow v_{e}$ oscillations (θ_{13})
- First direct measurement of v vs \overline{v} oscillations from atmospheric neutrino events
 - MINOS is the first large deep underground detector with a B-field

The NuMI beam

- 120 GeV protons extracted from the Main Injector in a single turn (8.7µs)
- 1.9 s cycle time *i.e.* v beam on' for 8.7 ms every 1.9 s
- 2.5×10¹³ protons/pulse initially
- 2.5x10²⁰ protons/year initial intensity
- 0.25 MW on target!
- 0.4 MW at 4x10¹³ p/pulse!

Tuneable Beam

- Relative position of target and horns allows tuning of beam energy. Act like a pair of highly achromatic lenses.
- MINOS starts with LE beam best for $\Delta m^2 \sim 0.002 \text{ eV}^2$
- Can run neutrinos or antineutrinos

LE BEAM:

 ν_{μ} CC Events Observed/yr:

Low Medium High 1600 4300 9250

(2.5x10²⁰ protons on target/year)

NOVA

Numi Off-Axis V_e Appearance Experiment

Argonne, Athens, Caltech, UCLA, Fermilab, College de France, Harvard, Indiana, ITEP, Lebedev, Michigan State, Minnesota/Duluth, Minnesota/Minneapolis, Munich, Stony Brook, Northern Illinois, Ohio, Ohio State, Oxford, Rio de Janeiro, Rutherford, South Carolina, Stanford, Texas A&M, Texas/Austin, Tufts, Virginia, Washington, William & Mary, Wisconsin

Goals of the NOvA Experiment

- Observe v_e appearance
- Sensitivity to $Sin^2(2\theta_{13})$ a factor of 10 below CHOOZ sensitivity, i.e. down to ~ 0.01
- $Sin^2(2\theta_{23})$ measurement to 2% accuracy
- Resolve or contribute to determination of mass hierarchy via matter effects
- Begin to study CP violation in lepton sector

How NOvA Will Meet its Goals

- $^{\bullet}$ Reduce backgrounds to ν_e appearance search by going off the NUMI beam axis for a narrow-band beam. Will use Medium Energy configuration.
- Increase flux/POT at oscillation max by ~2 by going off-axis
- Increase detector mass a factor of 6 over MINOS while reducing cost/kiloton by a factor of 3
- $^{\circ}$ 80% active detector design (compared to 1.5 X_0 sampling in MINOS)
 - electron showers appear as "fuzzy" tracks with 1-4 hits/plane/view
 - allow better separation of γ 's from π^0 decays
 - good energy resolution to focus on signal energy region
- * Choose long baseline to enhance matter effects

Off-Axis Neutrino Beams

First proposed by BNL E-889

NUMI Neutrino Spectra

- 14 mrad off-axis beam peaks just above oscillation max at ~ 2 GeV with ~20% width
- · High energy tail suppressed
 - \blacksquare Reduces NC and τ backgrounds
- Main peak from π decays. K decay ν at much wider angles.
 - Spectrum prediction insensitive to knowledge of k/π ratio

Event Rates

Event rates calculated for

- L=810 km, 12 km off-axis
- $^{\bullet}$ $\Delta m_{23}^2 = 2.5 \times 10^{-3} \text{ eV}^2$
- $\sin^2 2\theta_{23} = 1$
- $\sin^2 2\theta_{13} = 0.01$

To Reject Background:

- 50:1 rejection of v_{μ} CC required \Rightarrow Easy!
- Need 100:1 NC rejection ⇒ fine grained, low density
- Good energy resolution → reject beam v_e

The NOvA Far Detector

- 30 kT, low Z tracking calorimeter
- 80% active material (by weight).
- Optimized for detecting 2 GeV electrons.
- PVC extrusions filled with Liq. Scint.
 - Cell size of 3.87cm x 6.0 cm x 15.7 m
 - 12 extrusions/plane
 - 32 cells/extrusion
 - 1984 planes
 - = 23,808 extrusions
 - = = 761,856 channels
- 0.8 mm looped WLS fiber into APD readout

Typical NOvA Event: $v_e A \rightarrow p e^- \pi^0$, $E_v = 1.65 GeV$

Signal efficiency 24% signal/background 7.3

signal/sqrt(bg.) 32

NOvA Near Detector

- ~ 1 km from NUMI target
- Fits in several existing locations in NUMI access tunnel.
 - 3.5 m × 4.8 m × 9.6 m
 - Includes veto, shower containment, muon catcher.....
- No single location optimizes all parameters
 - Make movable or build more than 1

NOvA Milestones

Milestone	Date (in months relative to Project Start)	Proposed Calendar Date	FY
Project Start	t_{0}	October, 2006	07
Order extrusions and fiber	t ₀ +1	Nov., 2007	07
Start extrusion module factories	t ₀ +12	October, 2007	08
Start operation of Near Detector	t ₀ +21	July, 2008	08
Far building complete	t ₀ +31	May, 2009	09
Start Construction of Far detector	t ₀ +31	May, 2009	09
First kiloton operational	t ₀ +36	Oct., 2009	10
First 15 kilotons operational	t ₀ +47	June 2010	10
Full 30 kilotons operational	t ₀ +57	July, 2011	11

Fermilab Proton Plan

	Booster Batch Size	Main Injector Load	Cycle Time	MI Intensity	Booster Rate*	Total Proton Rate	Annual Rate at end of Phase		
		(AP + NuMI)	(sec)	(protons)	(Hz)	(p/hr)	NuMI	BNB	
Actual Operation									
July, 04	5.0E+12	1+0	2.0	0.5E+13	5.1	0.8E+17	0	3.3E+20	
Proton Plan									
Phase I	5.10E+12	2+1→2+5	2.0	3.6E+13	6.3	1.0E+17	2.0E+20	1.5E+20	
Phase II	5.3E+12	2+5	2.0	3.7E+13	7.5	1.2E+17	2.2E+20	2.8E+20	
Phase III	5.50E+12	2+9	2.2	6.0E+13	8.3	1.5E+17	3.4E+20	2.2E+20	
Beyond Scope of Present Plan									
11 Hz	5.50E+12	2+9	2.2	6.1E+13	11.0	2.0E+17	3.4E+20	5.0E+20	

TABLE 6: Performance parameters at the completion of each phase of operation.

http://www.fnal.gov/directorate/program_planning/Nov2004PACPublic/Draft_Proton_Plan_v2.pdf

2008

^{*} Booster rate is limited by radiation levels, except for the 11 Hz case

Fermilab Proton Plan after 2009

Collider operations end in 2009

- Proton bunches in MI used to p now available to NuMI
- $\rightarrow \times 11/9$

No NuMI downtime due to shot setup (10%) or antiproton transfers to Recycler (5%)

- \rightarrow × 1.176
- Load 11 booster batches into Recycler and transfer from Recycler to MI in a single booster cycle. MI cycle time reduced from 2.2 s to 1.467 s
- \rightarrow × 1.5

• $(1.22)(1.176)(1.5)(3.4 \times 10^{20} \text{ p/yr}) = 7.3 \times 10^{20} \text{ p/yr}$

Assume 90% \rightarrow 6.5 \times 10²⁰ p/yr

Statistically Limited

- ullet NOvA will be statistically limited. Thus, the power of the experiment is proportional to mass times the neutrino flux.
- A Fermilab Proton Driver would provide 25×10^{20} pot/yr, a factor of $\times 4$.
- Same effect as building 4 NOvA's which would cost \$500M more and be truly enormous:

Interpreting what we measure

- Experiments measure oscillation probabilities
- Ambiguities in $\sin^2(2\theta_{13})$ due to CP phase δ and mass hierarchy
- Comparison of NOvA and T2K at different baselines can break ambiguities
- Possibly use a 2^d NUMI off-axis detector at the 2^d oscillation maximum
- Sensitivity varies with CP phase
- Quote sensitivities vs the fraction of the CP ellipse covered

$Sin^2(2\theta_{13})$ Sensitivity

- Vertical axis is the fraction of possible δ values for which a 3σ discovery could be made.
- At large values of $\sin^2(2\theta_{13})$ a 3σ discovery can be made for all values of δ .
- At lower values of $\sin^2(2\theta_{13})$ a 3σ discovery is only possible for a range of δ .
- 5% systematic error on background determination included.

Resolving the Mass Hierarchy

There is a reasonable region of parameter space for which NOvA can resolve hierarchy. Proton Driver extends reach by factor of 2.

Resolving the Mass Hierarchy (cont.)

NOvA alone and with an additional off-axis detector at the 2d maximum

At 2d oscillation maximum

- L=710 km, 30 km off-axis
- Energy lower by x 3
 - \Rightarrow Matter effect smaller by x 3
 - \Rightarrow CP violation larger by \times 3

Mass hierarchy resolved for all δ for $Sin^2(2\theta_{13}) > 0.015$

95% C.L. Resolution of Mass Hierarchy

12 years with proton driver 6 years with 2 detectors

Sensitivity to CP Violation

 Long baseline experiments generally need to know the hierarchy to measure the CP phase

Maximal CPV for one mass ordering can have v and \overline{v} probabilities corresponding to no CPV for the other mass ordering

Neither NOvA nor T2K can demonstrate CP violation in 6 years of running without enhanced proton sources

Sensitivity to CP Violation (cont.)

- Fraction of possible δ values for which there is a 3σ demonstration of CP violation
 - i.e. δ is neither 0 nor π for both mass orderings.

3 σ Determination of CP Violation

Precise Determination of $Sin^2(2\theta_{23})$

- Important because:
 - If mixing is maximal, could be due to unknown symmetry
 - $v_{\mu} \rightarrow v_{e}$ oscillation is proportional to $\sin^{2}(\theta_{23})\sin^{2}(2\theta_{13})$.
 - If mixing is not maximal, this leads to an ambiguity in comparing reactor and accelerator results.
- Precision measurement requires
 - good statistics
 - excellent v energy resolution
 - good control of systematics
- Use totally contained quasi-elastic events
 - Very clean, essentially no NC background
 - Can measure $\sin^2(2\theta_{23})$ to ~ 1-2% level

Precise Determination of $Sin^2(2\theta_{23})$

5 year v run with Proton Driver

 1σ and 2σ contours for simultaneous measurement of Δm_{32}^2 and $\sin^2(2\theta_{23})$ for a 5 year ν run without a Proton Driver.

For maximal mixing, error on $\sin^2(2\theta_{23})$ is about 0.004 without Proton Driver and 0.002 with a Proton Driver.

Summary

- Fermilab's long-range plan includes an ongoing program of long baseline neutrino experiments.
- MINOS is the first step in this program and is just now underway (see talk by Mary Bashi at this workshop).
- NOvA would be the next step
 - Presented current design to Fermilab PAC yesterday
 - Hoping for rapid consideration, by June at the latest
 - NuSAG review by funding agencies to report in June
 - NOvA and Fermilab are very open to new collaborators
- A Proton Driver is being considered to augment the neutrino program and to support a wide range of other physics programs

 (see talk by John Ellis at this workshop)
- In some scenarios a 2d NUMI off-axis detector at the 2d maximum is helpful